Hybrid Metabolic Network Completion
نویسندگان
چکیده
Metabolic networks play a crucial role in biology since they capture all chemical reactions in an organism. While there are networks of high quality for many model organisms, networks for less studied organisms are often of poor quality and suffer from incompleteness. To this end, we introduced in previous work an ASP-based approach to metabolic network completion. Although this qualitative approach allows for restoring moderately degraded networks, it fails to restore highly degraded ones. This is because it ignores quantitative constraints capturing reaction rates. To address this problem, we propose a hybrid approach to metabolic network completion that integrates our qualitative ASP approach with quantitative means for capturing reaction rates. We begin by formally reconciling existing stoichiometric and topological approaches to network completion in a unified formalism. With it, we develop a hybrid ASP encoding and rely upon the theory reasoning capacities of the ASP system clingo for solving the resulting logic program with linear constraints over reals. We empirically evaluate our approach by means of the metabolic network of Escherichia coli. Our analysis shows that our novel approach yields greatly superior results than obtainable from purely qualitative or quantitative approaches.
منابع مشابه
A hybrid method to find cumulative distribution function of completion time of GERT networks
This paper proposes a hybrid method to find cumulative distribution function (CDF) of completion time of GERT-type networks (GTN) which have no loop and have only exclusive-or nodes. Proposed method is cre-ated by combining an analytical transformation with Gaussian quadrature formula. Also the combined crude Monte Carlo simulation and combined conditional Monte Carlo simulation are developed a...
متن کاملFuzzy completion time for alternative stochastic networks
In this paper a network comprising alternative branching nodes with probabilistic outcomes is considered. In other words, network nodes are probabilistic with exclusive-or receiver and exclusive-or emitter. First, an analytical approach is proposed to simplify the structure of network. Then, it is assumed that the duration of activities is positive trapezoidal fuzzy number (TFN). This paper com...
متن کاملNeuron Mathematical Model Representation of Neural Tensor Network for RDF Knowledge Base Completion
In this paper, a state-of-the-art neuron mathematical model of neural tensor network (NTN) is proposed to RDF knowledge base completion problem. One of the difficulties with the parameter of the network is that representation of its neuron mathematical model is not possible. For this reason, a new representation of this network is suggested that solves this difficulty. In the representation, th...
متن کاملEvaluating project’s completion time with Q-learning
Nowadays project management is a key component in introductory operations management. The educators and the researchers in these areas advocate representing a project as a network and applying the solution approaches for network models to them to assist project managers to monitor their completion. In this paper, we evaluated project’s completion time utilizing the Q-learning algorithm. So the ...
متن کاملEvaluating project’s completion time with Q-learning
Nowadays project management is a key component in introductory operations management. The educators and the researchers in these areas advocate representing a project as a network and applying the solution approaches for network models to them to assist project managers to monitor their completion. In this paper, we evaluated project’s completion time utilizing the Q-learning algorithm. So the ...
متن کامل